При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Из перечисленного ниже к физическому явлению относится:

1) движение

2) мензурка

3) масса

4) скрепка

5) время

2. Если кинематические законы прямолинейного движения тел вдоль оси Ox имеют вид: $x_1(t) = A + Bt$, где A = 10 м, B = 1,2 м/с, и $x_2(t) = C + Dt$, где C = 45 м, D = -2,3 м/с, то тела встретятся в момент времени t, равный:

1) 20 c

2) 18 c

3) 16 c

4) 13 c

5) 10 c

3. Почтовый голубь дважды пролетел путь из пункта A в пункт B, двигаясь с одной и той же скоростью относительно воздуха. В первом случае, в безветренную погоду, голубь преодолел путь AB за промежуток времени $\Delta t_1 = 60$ мин. Во втором случае, при встречном ветре, скорость которого была постоянной, голубь пролетел этот путь за промежуток времени $\Delta t_2 = 75$ мин.

Если бы ветер был попутным, то путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

1) 35 мин

2) 40 мин

3) 45 мин

4) 50 мин

5) 55 мин

4. Деревянный шар ($\rho_1 = 4.0 \cdot 10^2 \ \text{кг/м}^3$) всплывает в воде ($\rho_2 = 1.0 \cdot 10^3 \ \text{кг/м}^3$) с постоянной скоростью. Отношение $\frac{F_{\rm c}}{F_{\rm r}}$ модулей силы сопротивления воды и силы тяжести, действующих на шар, равно:

> 1) 1,0 2) 1,5

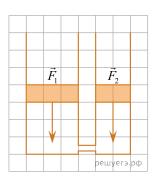
3) 2,8

4) 3.5

5. Цепь массой m = 2,0 кг и длиной l = 1,0 м, лежащую на гладком горизонтальном столе, поднимают за один конец. Минимальная работа A_{min} по подъему цепи, при котором она перестанет оказывать давление на стол, равна:

1) 10 Дж

2) 20 Дж


3) 30 Дж

4) 40 Дж

5) 50 Дж

5) 4.0

6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы F_1 = 18 H, то для удержания системы в равновесии модуль силы F_2 должен быть равен:

1) 8 H

2) 12 H

3) 18 H

4) 27 H

5) 40 H

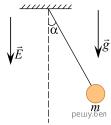
7. Если абсолютная температура тела T=330 K, то его температура t по шкале Цельсия равна:

1) $17 \,^{\circ}C$ 2) $27 \,^{\circ}C$ 3) $37 \,^{\circ}C$ 4) $57 \,^{\circ}C$ 5) $77 \,^{\circ}C$

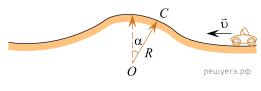
8. Если при изотермическом расширении идеального газа, количество вещества которого постоянно, давление газа уменьшилось на $\Delta p = 80$ кПа, а объем газа увеличился в k = 5,00 раз, то давление p_2 газа в конечном состоянии равно:

9. В закрытом баллоне находится v=2,00 моль идеального одноатомного газа. Если газу сообщили количество теплоты Q=18,0 кДж и его давление увеличилось в k=3,00 раза, то начальная температура T_1 газа была равна:

1) 280 K 2) 296 K 3) 339 K 4) 361 K 5) 394 K

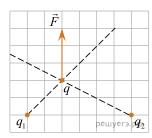

10. В паспорте энергосберегающей лампы приведены следующие технические характеристики:

- 1) (220 240) B; 2) 90 mA;
- 3) 12 BT; 4) 2700 K;
- 5) (50-60) Гц.

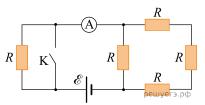

Параметр, характеризующий силу тока, указан в строке, номер которой:

1) 1 2) 2 3) 3 4) 4 5) 5

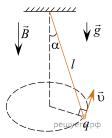
11. Маленький шарик массой m=15 г, имеющий заряд q=2,0 мкКл, подвешен на непроводящей невесомой нерастяжимой нити длиной I и помещён в однородное вертикальное электростатическое поле, модуль напряжённости которого E=127 кВ/м (см. рис.). Нить с шариком отвели на угол $\alpha=30^\circ$ от вертикали и отпустили без начальной скорости. Если модуль максимальной скорости шарика в процессе движения $v_{\rm max}=1,55$, то длина l нити равна ... см.



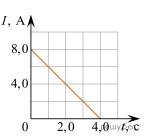
- **12.** С помощью подъёмного механизма груз массой m=0,80 т равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени Δt после начала подъёма груз находился на высоте h=30 м, продолжая движение. Если сила тяги подъёмного механизма к этому моменту времени совершила работу A=0,25 МДж, то промежуток времени Δt равен ... с.
- 13. На дне вертикального цилиндрического сосуда, радиус основания которого R=10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=215 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B}=1,00$ г/см³), равный ... см³.
- **14.** Автомобиль движется по дороге со скоростью, модуль которой $\upsilon=93,6\frac{\mathrm{KM}}{\mathrm{q}}$. Профиль дороги показан на рисунке. В точке C радиус кривизны профиля R=255 м. Если в точке C, направление на которую из центра кривизны составляет с вертикалью угол $\alpha=30,0^o$, модуль силы давления автомобиля на дорогу F=5,16 кH, то масса m автомобиля равна ... кг.



15. В баллоне находится смесь газов: аргон ($M_1=40~\frac{\Gamma}{\text{МОЛЬ}}$) и кислород ($M_2=32~\frac{\Gamma}{\text{МОЛЬ}}$). Если парциальное давление аргона в три раза больше парциального давления кислорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{МОЛЬ}}$.


- 16. Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине h_1 = 80 м температура воды ($\rho=1,0\frac{\Gamma}{\text{см}^3}$) $t_1=7,0^{\circ}\text{C}$, а объём пузырька $V_1=0,59~\text{cm}^3$. Если атмосферное давление $p_0=1,0\cdot 10^5~\Pi\text{a}$, то на глубине h_2 = 1,0 м, где температура воды $t_2=17^{\circ}\text{C}$, на пузырёк действует выталкивающая сила, модуль F которой равен ... мН.
- **17.** В тепловом двигателе рабочим телом является одноатомный идеальный газ, количество вещества которого постоянно. Газ совершил цикл, состоящий из двух изохор и двух изобар. При этом максимальное давление газа было в четыре раза больше минимального, а максимальный объём газа в n = 2,5 раза больше минимального. Коэффициент полезного действия η цикла равен ... %.
- **18.** На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд $q_1 = 5,1$ нКл, то заряд q_2 равен ...нКл.

19. В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если до замыкания ключа K идеальный амперметр показывал силу тока $I_1 = 15$ мА, то после замыкания ключа K амперметр покажет силу тока I_2 , равную ... мА.



- **20.** Тонкое проволочное кольцо радиусом r = 4,0 см и массой m = 98,6 мг, изготовленное из проводника сопротивлением R = 0,40 Ом, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x = kx$, где k = 4,0 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0 = 4,0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... **см**.
- **21.** В вакууме в однородном магнитном поле, линии индукции которого вертикальны, а модуль индукции B=6,0 Тл, на невесомой нерастяжимой непроводящей нити равномерно вращается небольшой шарик, заряд которого q=0,30 мкКл (см. рис.). Модуль линейной скорости движения шарика $\upsilon=31$ см/с масса шарика m=30 мг. Если синус угла отклонения нити от вертикали $\sin\alpha=0,10$, то чему равна длина ι нити равна? Ответ приведите в сантиметрах.

- **22.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=70 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|$ =200 пКл) шарик массой m=630 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=36,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=400 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **23.** Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.

- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\varphi = 30 \text{ B}$, то модуль силы F электростатического взаимодействия между зарядами равен ... нН.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\text{M}}{\text{c}}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\mathrm{tg}\,\beta}{\mathrm{tg}\,\alpha}=\frac{5}{2},$ то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.